您的位置:首頁>正文

電子電路知識從零開始:二極體

二極體

二極體又稱晶體二極管,簡稱二極體(diode), 另外, 還有早期的真空電子二極體;它是一種具有單向傳導電流的電子器件。 在半導體二極體內部有一個PN結兩個引線端子, 這種電子器件按照外加電壓的方向, 具備單向電流的轉導性。 一般來講, 晶體二極管是一個由p型半導體和n型半導體燒結形成的p-n結介面。 在其介面的兩側形成空間電荷層, 構成自建電場。 當外加電壓等於零時, 由於p-n 結兩邊載流子的濃度差引起擴散電流和由自建電場引起的漂移電流相等而處於電平衡狀態, 這也是常態下的二極體特性。

幾乎在所有的電子電路中, 都要用到半導體二極體。

二極體

基本介紹

二極體, 電子元件當中, 一種具有兩個電極的裝置, 只允許電流由單一方向流過。 許多的使用是應用其整流的功能。 而變容二極體(Varicap Diode)則用來當作電子式的可調電容器。

二極體

大部分二極體所具備的電流方向性我們通常稱之為“整流(Rectifying)”功能。 二極體最普遍的功能就是只允許電流由單一方向通過(稱為順向偏壓), 反向時阻斷 (稱為逆向偏壓)。 因此, 二極體可以想成電子版的逆止閥。 然而實際上二極體並不會表現出如此完美的開與關的方向性, 而是較為複雜的非線性電子特徵——這是由特定類型的二極體技術決定的。 二極體使用上除了用做開關的方式之外還有很多其他的功能。

早期的二極體包含“貓須晶體("Cat's Whisker"Crystals)”以及真空管(英國稱為“熱游離閥(Thermionic Valves)”)。 現今最普遍的二極體大多是使用半導體材料如矽或鍺。

主要特性

正向性

外加正向電壓時, 在正向特性的起始部分, 正向電壓很小, 不足以克服PN結內電場的阻擋作用,

正向電流幾乎為零, 這一段稱為死區。 這個不能使二極體導通的正向電壓稱為死區電壓。 當正向電壓大於死區電壓以後, PN結內電場被克服, 二極體正嚮導通, 電流隨電壓增大而迅速上升。 在正常使用的電流範圍內, 導通時二極體的端電壓幾乎維持不變, 這個電壓稱為二極體的正向電壓。

反向性

外加反向電壓不超過一定範圍時, 通過二極體的電流是少數載流子漂移運動所形成反向電流。 由於反向電流很小, 二極體處於截止狀態。 這個反向電流又稱為反向飽和電流或漏電流, 二極體的反向飽和電流受溫度影響很大。

擊穿

內部結構

內部結構

外加反向電壓超過某一數值時, 反向電流會突然增大, 這種現象稱為電擊穿。 引起電擊穿的臨界電壓稱為二極體反向擊穿電壓。 電擊穿時二極體失去單向導電性。 如果二極體沒有因電擊穿而引起過熱, 則單向導電性不一定會被永久破壞, 在撤除外加電壓後, 其性能仍可恢復, 否則二極體就損壞了。

因而使用時應避免二極體外加的反向電壓過高。

二極體是一種具有單向導電的二端器件, 有電子二極體和晶體二極管之分, 電子二極體現已很少見到, 比較常見和常用的多是晶體二極管。 二極體的單向導電特性, 幾乎在所有的電子電路中, 都要用到半導體二極體, 它在許多的電路中起著重要的作用, 它是誕生最早的半導體器件之一, 其應用也非常廣泛。

二極體的管壓降:矽二極體(不發光類型)正向管壓降0.7V, 鍺管正向管壓降為0.3V, 發光二極體正向管壓降會隨不同發光顏色而不同。 主要有三種顏色, 具體壓降參考值如下:紅色發光二極體的壓降為2.0--2.2V, 黃色發光二極體的壓降為1.8—2.0V, 綠色發光二極體的壓降為3.0—3.2V, 正常發光時的額定電流約為20mA。

二極體

二極體的電壓與電流不是線性關係,所以在將不同的二極體並聯的時候要接相適應的電阻。

二極體的特性曲線

與PN結一樣,二極體具有單向導電性。矽二極體典型伏安特性曲線。在二極體加有正向電壓,當電壓值較小時,電流極小;當電壓超過0.6V時,電流開始按指數規律增大,通常稱此為二極體的開啟電壓;當電壓達到約0.7V時,二極體處於完全導通狀態,通常稱此電壓為二極體的導通電壓,用符號UD表示。

對於鍺二極體,開啟電壓為0.2V,導通電壓UD約為0.3V。

在二極體加有反向電壓,當電壓值較小時,電流極小,其電流值為反向飽和電流IS。當反向電壓超過某個值時,電流開始急劇增大,稱之為反向擊穿,稱此電壓為二極體的反向擊穿電壓,用符號UBR表示。不同型號的二極體的擊穿電壓UBR值差別很大,從幾十伏到幾千伏。

二極體的反向擊穿

齊納擊穿

電子-內部結構模型圖

反向擊穿按機理分為齊納擊穿和雪崩擊穿兩種情況。在高摻雜濃度的情況下,因勢壘區寬度很小,反向電壓較大時,破壞了勢壘區內共價鍵結構,使價電子脫離共價鍵束縛,產生電子-空穴對,致使電流急劇增大,這種擊穿稱為齊納擊穿。如果摻雜濃度較低,勢壘區寬度較寬,不容易產生齊納擊穿。

雪崩擊穿

另一種擊穿為雪崩擊穿。當反向電壓增加到較大數值時,外加電場使電子漂移速度加快,從而與共價鍵中的價電子相碰撞,把價電子撞出共價鍵,產生新的電子-空穴對。新產生的電子-空穴被電場加速後又撞出其它價電子,載流子雪崩式地增加,致使電流急劇增加,這種擊穿稱為雪崩擊穿。無論哪種擊穿,若對其電流不加限制,都可能造成PN結永久性損壞。

主要作用

二極體電路

二極體

二極體是最常用的電子元件之一,他最大的特性就是單向導電,也就是電流只可以從二極體的一個方向流過,二極體的作用有整流電路,檢波電路,穩壓電路,各種調製電路,主要都是由二極體來構成的,其原理都很簡單,正是由於二極體等元件的發明,才有我們現在豐富多彩的電子資訊世界的誕生,既然二極體的作用這麼大那麼我們應該如何去檢測這個元件呢,其實很簡單只要用萬用表打到電阻檔測量一下正向電阻如果很小,反相電阻如果很大這就說明這個二極體是好的。對於這樣的基礎元件我們應牢牢掌握住他的作用原理以及基本電路,這樣才能為以後的電子技術學習打下良好的基礎。

工作原理

晶體二極管為一個由p型半導體和n型半導體形成的pn結,在其介面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於pn結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓範圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,pn結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極體的擊穿現象。pn結的反向擊穿有齊納擊穿和雪崩擊穿之分。

主要類型

二極體

二極體種類有很多,按照所用的半導體材料,可分為鍺二極體(Ge管)和矽二極體(Si管)。根據其不同用途,可分為檢波二極體、整流二極體、穩壓二極體、開關二極體、隔離二極體、肖特基二極體、發光二極體、矽功率開關二極體、旋轉二極體等。按照管芯結構,又可分為點接觸型二極體、面接觸型二極體及平面型二極體。點接觸型二極體是用一根很細的金屬絲壓在光潔的半導體晶片表面,通以脈衝電流,使觸絲一端與晶片牢固地燒結在一起,形成一個“PN結”。由於是點接觸,只允許通過較小的電流(不超過幾十毫安培),適用於高頻小電流電路,如收音機的檢波等。面接觸型二極體的“PN結”面積較大,允許通過較大的電流(幾安到幾十安),主要用於把交流電變換成直流電的“整流”電路中。平面型二極體是一種特製的矽二極體,它不僅能通過較大的電流,而且性能穩定可靠,多用於開關、脈衝及高頻電路中。

主要分類

構造分類

半導體二極體主要是依靠PN結而工作的。與PN結不可分割的點接觸型和肖特基型,也被列入一般的二極體的範圍內。包括這兩種型號在內,根據PN結構造面的特點,把晶體二極管分類如下:

點接觸型二極體

點接觸型二極體是在鍺或矽材料的單晶片上壓觸一根金屬針後,再通過電流法而形成的。因此,其PN結的靜電容量小,適用於高頻電路。但是,與面結型相比較,點接觸型二極體正向特性和反向特性都差,因此,不能使用於大電流和整流。因為構造簡單,所以價格便宜。

面接觸型二極體

面接觸型或稱面積型二極體的PN結是用合金法或擴散法做成的,由於這種二極體的PN結面積大,可承受較大電流,但極間電容也大。這類器件適用於整流,而不宜用於高頻率電路中。

鍵型二極體

鍵型二極體是在鍺或矽的單晶片上熔接或銀的細絲而形成的。其特性介於點接觸型二極體和合金型二極體之間。與點接觸型相比較,雖然鍵型二極體的PN結電容量稍有增加,但正向特性特別優良。多作開關用,有時也被應用於檢波和電源整流(不大於50mA)。在鍵型二極體中,熔接金絲的二極體有時被稱金鍵型,熔接銀絲的二極體有時被稱為銀鍵型。

合金型二極體

在N型鍺或矽的單晶片上,通過合金銦、鋁等金屬的方法製作PN結而形成的。正向電壓降小,適於大電流整流。因其PN結反向時靜電容量大,所以不適於高頻檢波和高頻整流。

擴散型二極體

在高溫的P型雜質氣體中,加熱N型鍺或矽的單晶片,使單晶片表面的一部變成P型,以此法PN結。因PN結正向電壓降小,適用於大電流整流。最近,使用大電流整流器的主流已由矽合金型轉移到矽擴散型。

檯面型二極體

PN結的製作方法雖然與擴散型相同,但是,只保留PN結及其必要的部分,把不必要的部分用藥品腐蝕掉。其剩餘的部分便呈現出檯面形,因而得名。初期生產的檯面型,是對半導體材料使用擴散法而製成的。因此,又把這種檯面型稱為擴散檯面型。對於這一類型來說,似乎大電流整流用的產品型號很少,而小電流開關用的產品型號卻很多。

平面型二極體

在半導體單晶片(主要地是N型矽單晶片)上,擴散P型雜質,利用矽片表面氧化膜的遮罩作用,在N型矽單晶片上僅選擇性地擴散一部分而形成的PN結。因此,不需要為調整PN結面積的藥品腐蝕作用。由於半導體表面被製作得平整,故而得名。並且,PN結合的表面,因被氧化膜覆蓋,所以公認為是穩定性好和壽命長的類型。最初,對於被使用的半導體材料是採用外延法形成的,故又把平面型稱為外延平面型。對平面型二極體而言,似乎使用於大電流整流用的型號很少,而作小電流開關用的型號則很多。

合金擴散型二極體

它是合金型的一種。合金材料是容易被擴散的材料。把難以製作的材料通過巧妙地摻配雜質,就能與合金一起過擴散,以便在已經形成的PN結中獲得雜質的恰當的濃度分佈。此法適用于製造高靈敏度的變容二極體。

外延型二極體

用外延面長的過程製造PN結而形成的二極體。製造時需要非常高超的技術。因能隨意地控制雜質的不同濃度的分佈,故適宜于製造高靈敏度的變容二極體。

肖特基二極體

基本原理是:在金屬(例如鉛)和半導體(N型矽片)的接觸面上,用已形成的肖特基來阻擋反向電壓。肖特基與PN結的整流作用原理有根本性的差異。其耐壓程度只有40V左右。其特長是:開關速度非常快:反向恢復時間trr特別地短。因此,能製作開關二極和低壓大電流整流二極體。

用途分類

1.檢波二極體

檢波二極體的主要作用是把高頻信號中的低頻信號檢出。它們的結構為點接觸型,所以其結電容較小,工作頻率較高。一般都採用鍺材料製成。就原理而言,從輸入信號中取出調製信號是檢波,以整流電流的大小(100mA)作為界線通常把輸出電流小於100mA的叫檢波。鍺材料點接觸型、工作頻率可達400MHz,正向壓降小,結電容小,檢波效率高,頻率特性好,為2AP型。類似點觸型那樣檢波用的二極體,除用於檢波外,還能夠用於限幅、削波、調製、混頻、開關等電路。也有為調頻檢波專用的特性一致性好的兩隻二極體組合件。

2.整流二極體

就原理而言,從輸入交流中得到輸出的直流是整流。以整流電流的大小(100mA)作為界線通常把輸出電流大於100mA的叫整流。面結型,因此結電容較大,一般為3kHZ以下。最高反向電壓從25伏至3000伏分A~X共22檔。分類如下:①矽半導體整流二極體2CZ型、②矽橋式整流器QL型、③用於電視機高壓矽堆工作頻率近100KHz的2CLG型。

3.限幅二極體

二極體正嚮導通後,它的正向壓降基本保持不變(矽管為0.7V,鍺管為0.3V)。利用這一特性,在電路中作為限幅元件,可以把信號幅度限制在一定範圍內。

大多數二極體能作為限幅使用。也有象保護儀錶用和高頻齊納管那樣的專用限幅二極體。為了使這些二極體具有特別強的限制尖銳振幅的作用,通常使用矽材料製造的二極體。也有這樣的組件出售:依據限制電壓需要,把若干個必要的整流二極體串聯起來形成一個整體。

4.調製二極體

通常指的是環形調製專用的二極體。就是正向特性一致性好的四個二極體的組合件。即使其它變容二極體也有調製用途,但它們通常是直接作為調頻用。

5.混頻二極體

使用二極體混頻方式時,在500~10,000Hz的頻率範圍內,多採用肖特基型和點接觸型二極體。

6.放大二極體

二級管圖示

用二極體放大,大致有依靠隧道二極體和體效應二極體那樣的負阻性 器件的放大,以及用變容二極體的參量放大。因此,放大用二極體通常是指隧道二極體、體效應二極體和變容二極體。

7.開關二極體

二極體在正向電壓作用下電阻很小,處於導通狀態,相當於一隻接通的開關;在反向電壓作用下,電阻很大,處於截止狀態,如同一隻斷開的開關。利用二極體的開關特性,可以組成各種邏輯電路。

有在小電流下(10mA程度)使用的邏輯運算和在數百毫安培下使用的磁芯激勵用開關二極體。小電流的開關二極體通常有點接觸型和鍵型等二極體,也有在高溫下還可能工作的矽擴散型、檯面型和平面型二極體。開關二極體的特長是開關速度快。而肖特基型二極體的開關時間特短,因而是理想的開關二極體。2AK型點接觸為中速開關電路用;2CK型平面接觸為高速開關電路用;用於開關、限幅、鉗位元或檢波等電路;肖特基(SBD)矽大電流開關,正向壓降小,速度快、效率高。

8.變容二極體

用於自動頻率控制(AFC)和調諧用的小功率二極體稱變容二極體。日本廠商方面也有其它許多叫法。通過施加反向電壓, ;使其PN結的靜電容量發生變化。因此,被使用於自動頻率控制、掃描振盪、調頻和調諧等用途。通常,雖然是採用矽的擴散型二極體,但是也可採用合金擴散型、外延結合型、雙重擴散型等特殊製作的二極體,因為這些二極體對於電壓而言,其靜電容量的變化率特別大。結電容隨反向電壓VR變化,取代可變電容,用作調諧回路、振盪電路、鎖相環路,常用於電視機高頻頭的頻道轉換和調諧電路,多以矽材料製作。

9.頻率倍增用二極體

對二極體的頻率倍增作用而言,有依靠變容二極體的頻率倍增和依靠階躍(即急變)二極體的頻率倍增。頻率倍增用的變容二極體稱為可變電抗器,可變電抗器雖然和自動頻率控制用的變容二極體的工作原理相同,但電抗器的構造卻能承受大功率。階躍二極體又被稱為階躍恢復二極體,從導通切換到關閉時的反向恢復時間trr短,因此,其特長是急速地變成關閉的轉移時間顯著地短。如果對階躍二極體施加正弦波,那麼,因tt(轉移時間)短,所以輸出波形急驟地被夾斷,故能產生很多高頻諧波。

10.穩壓二極體

這種管子是利用二極體的反向擊穿特性製成的,在電路中其兩端的電壓保持基本不變,起到穩定電壓的作用。是代替穩壓電子二極體的產品。被製作成為矽的擴散型或合金型。是反向擊穿特性曲線急驟變化的二極體。作為控制電壓和標準電壓使用而製作的。二極體工作時的端電壓(又稱齊納電壓)從3V左右到150V,按每隔10%,能劃分成許多等級。在功率方面,也有從200mW至100W以上的產品。工作在反向擊穿狀態,矽材料製作,動態電阻RZ很小,一般為2CW、2CW56等;將兩個互補二極體反向串接以減少溫度係數則為2DW型。

穩壓二極體的溫度係數α:α表示溫度每變化1℃穩壓值的變化量。穩定電壓小於4V的管子具有負溫度係數(屬於齊納擊穿),即溫度升高時穩定電壓值下降(溫度使價電子上升較高能量);穩定電壓大於7V的管子具有正溫度係數(屬於雪崩式擊穿),即溫度升高時穩定電壓值上升(溫度使原子振幅加大,阻礙載流子運動);而穩定電壓在4~7V之間的管子,溫度係數非常小,近似為零(齊納擊穿和雪崩擊穿均有)。

11.PIN型二極體(PIN Diode)

這是在P區和N區之間夾一層本征半導體(或低濃度雜質的半導體)構造的晶體二極管。PIN中的I是"本征"意義的英文略語。當其工作頻率超過100MHz時,由於少數載流子的存貯效應和"本征"層中的渡越時間效應,其二極體失去整流作用而變成阻抗元件,並且,其阻抗值隨偏置電壓而改變。在零偏置或直流反向偏置時,"本征"區的阻抗很高;在直流正向偏置時,由於載流子注入"本征"區,而使"本征"區呈現出低阻抗狀態。因此,可以把PIN二極體作為可變阻抗元件使用。它常被應用於高頻開關(即微波開關)、移相、調製、限幅等電路中。

12.雪崩二極體(Avalanche Diode)

它是在外加電壓作用下可以產生高頻振盪的電晶體。產生高頻振盪的工作原理是欒的:利用雪崩擊穿對晶體注入載流子,因載流子渡越晶片需要一定的時間,所以其電流滯後於電壓,出現延遲時間,若適當地控制渡越時間,那麼,在電流和電壓關係上就會出現負阻效應,從而產生高頻振盪。它常被應用于微波領域的振盪電路中。

13.江崎二極體(Tunnel Diode)

它是以隧道效應電流為主要電流分量的晶體二極管。其基底材料是砷化鎵和鍺。其P型區的N型區是高摻雜的(即高濃度雜質的)。隧道電流由這些簡並態半導體的量子力學效應所產生。發生隧道效應具備如下三個條件:①費米能級位於導帶和滿帶內;②空間電荷層寬度必須很窄(0.01微米以下);簡並半導體P型區和N型區中的空穴和電子在同一能級上有交疊的可能性。江崎二極體為雙端子有源器件。其主要參數有峰穀電流比(IP/PV),其中,下標"P"代表"峰";而下標"V"代表"谷"。江崎二極體可以被應用於低雜訊高頻放大器及高頻振盪器中(其工作頻率可達毫米波段),也可以被應用於高速開關電路中。

14.快速關斷(階躍恢復)二極體(Step Recovary Diode)

它也是一種具有PN結的二極體。其結構上的特點是:在PN結邊界處具有陡峭的雜質分佈區,從而形成"自助電場"。由於PN結在正向偏壓下,以少數載流子導電,並在PN結附近具有電荷存貯效應,使其反向電流需要經歷一個"存貯時間"後才能降至最小值(反向飽和電流值)。階躍恢復二極體的"自助電場"縮短了存貯時間,使反向電流快速截止,並產生豐富的諧波分量。利用這些諧波分量可設計出梳狀頻譜發生電路。快速關斷(階躍恢復)二極體用於脈衝和高次諧波電路中。

15.肖特基二極體 ;(Schottky Barrier Diode)

它是具有肖特基特性的"金屬半導體結"的二極體。其正向起始電壓較低。其金屬層除材料外,還可以採用金、鉬、鎳、鈦等材料。其半導體材料採用矽或砷化鎵,多為N型半導體。這種器件是由多數載流子導電的,所以,其反向飽和電流較以少數載流子導電的PN結大得多。由於肖特基二極體中少數載流子的存貯效應甚微,所以其頻率響僅為RC時間常數限制,因而,它是高頻和快速開關的理想器件。其工作頻率可達100GHz。並且,MIS(金屬-絕緣體-半導體)肖特基二極體可以用來製作太陽能電池或發光二極體。

可作為續流二極體,在開關電源的電感中和繼電器等感性負載中起續流作用。

16.阻尼二極體

阻尼二極體多用在高頻電壓電路中,具有較高的反向工作電壓和峰值電流,正向壓降小,高頻高壓整流二極體,用在電視機行掃描電路作阻尼和升壓整流用。常用的阻尼二極體有2CN1、2CN2、BSBS44等。

17.瞬變電壓抑制二極體

TVP管,對電路進行快速過壓保護,分雙極型和單極型兩種,按峰值功率(500W-5000W)和電壓(8.2V~200V)分類。

18.雙基極二極體(單結晶體管)

兩個基極,一個發射極的三端負阻器件,用於張馳振盪電路,定時電壓讀出電路中,它具有頻率易調、溫度穩定性好等優點。

19.發光二極體

用磷化鎵、磷砷化鎵材料製成,體積小,正向驅動發光。工作電壓低,工作電流小,發光均勻、壽命長、可發紅、黃、綠、藍單色光。隨著技術的進步,近來研製成了白光高亮二極體,形成了LED照明這一新興產業。

還用於VCD、DVD、計算器等顯示器上。

20.、矽功率開關二極體

矽功率開關二極體具有高速導通與截止的能力。它主要用於大功率開關或穩壓電路、直流變換器、高速電機調速及在驅動電路中作高頻整流及續流箝拉,具有恢復特性軟、超載能力強的優點、廣泛用於電腦、雷達電源、步進電機調速等方面。

21.旋轉二極體

主要用於無刷電機勵磁、也可作普通整流用。

22.觸發二極體

觸發二極體又稱雙向觸發二極體(DIAC)屬三層結構,具有對稱性的二端半導體器件。常用來觸發雙向可控矽;,在電路中作過壓保護等用途。

特性分類

點接觸型二極體,按正向和反向特性分類如下。

1.一般用點接觸型二極體

這種二極體正如標題所說的那樣,通常被使用於檢波和整流電路中,是正向和反向特性既不特別好,也不特別壞的中間產品。如:SD34、SD46、1N34A等等屬於這一類。

2.高反向耐壓點接觸型二極體

是最大峰值反向電壓和最大直流反向電壓很高的產品。使用于高壓電路的檢波和整流。這種型號的二極體一般正向特性不太好或一般。在點接觸型鍺二極體中,有SD38、1N38A、OA81等等。這種鍺材料二極體,其耐壓受到限制。要求更高時有矽合金和擴散型。

3.高反向電阻點接觸型二極體

正向電壓特性和一般用二極體相同。雖然其反方向耐壓也是特別地高,但反向電流小,因此其特長是反向電阻高。使用于高輸入電阻的電路和高阻負荷電阻的電路中,就鍺材料高反向電阻型二極體而言,SD54、1N54A等等屬於這類二極體。

4.高傳導點接觸型二極體

它與高反向電阻型相反。其反向特性儘管很差,但使正向電阻變得足夠小。對高傳導點接觸型二極體而言,有SD56、1N56A等等。對高傳導鍵型二極體而言,能夠得到更優良的特性。這類二極體,在負荷電阻特別低的情況下,整流效率較高。

發光分類

二極體

1.按發光管發光顏色分

按發光管發光顏色分,可分成紅色、橙色、綠色(又細分黃綠、標準綠和純綠)、藍光等。另外,有的發光二極體中包含二種或三種顏色的晶片。根據發光二極體出光處摻或不摻散射劑、有色還是無色,上述各種顏色的發光二極體還可分成有色透明、無色透明、有色散射和無色散射四種類型。散射型發光二極體和達於做指示燈用。

2.按發光管出光面特徵分

二極體

按發光管出光面特徵分圓燈、方燈、矩形、面發光管、側向管、表面安裝用微型管等。

圓形燈按直徑分為φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。國外通常把φ3mm的發光二極體記作T-1;把 ;φ5mm的記作T-1(3/4);把φ4.4mm的記作T-1(1/4)。由半值角大小可以估計圓形發光強度角分佈情況。

3.從發光強度角分佈圖來分有三類:

⑴高指向性。一般為尖頭環氧封裝,或是帶金屬反射腔封裝,且不加散射劑。半值角為5°~20°或更小,具有很高的指向性,可作局部照明光源用,或與光檢出器聯用以組成自動檢測系統。

⑵標準型。通常作指示燈用,其半值角為20°~45°。

⑶散射型。這是視角較大的指示燈,半值角為45°~90°或更大,散射劑的量較大。

導電特性

二極體最重要的特性就是單方嚮導電性。在電路中,電流只能從二極體的正極流入,負極

二極體

流出。

正向特性

在電子電路中,將二極體的正極接在高電位端,負極接在低電位端,二極體就會導通,這種連接方式,稱為正向偏置。必須說明,當加在二極體兩端的正向電壓很小時,二極體仍然不能導通,流過二極體的正向電流十分微弱。只有當正向電壓達到某一數值(這一數值稱為“門檻電壓”,又稱“死區電壓”,鍺管約為0.1V,矽管約為0.5V)以後,二極體才能直正導通。導通後二極體兩端的電壓基本上保持不變(鍺管約為0.3V,矽管約為0.7V),稱為二極體的“正向壓降”。

反向特性

在電子電路中,二極體的正極接在低電位端,負極接在高電位端,此時二極體中幾乎沒有電流流過,此時二極體處於截止狀態,這種連接方式,稱為反向偏置。二極體處於反向偏置時,仍然會有微弱的反向電流流過二極體,稱為漏電流。當二極體兩端的反向電壓增大到某一數值,反向電流會急劇增大,二極體將失去單方嚮導電特性,這種狀態稱為二極體的擊穿。

主要參數

參數

用來表示二極體的性能好壞和適用範圍的技術指標,稱為二極體的參數。不同類型的二極體有不同的特性參數。對初學者而言,必須瞭解以下幾個主要參數:

1、最大整流電流IF

是指二極體長期連續工作時,允許通過的最大正向平均電流值,其值與PN結面積及外部散熱條件等有關。因為電流通過管子時會使管芯發熱,溫度上升,溫度超過容許限度(矽管為141左右,鍺管為90左右)時,就會使管芯過熱而損壞。所以在規定散熱條件下,二極體使用中不要超過二極體最大整流電流值。例如,常用的IN4001-4007型鍺二極體的額定正向工作電流為1A。

2、最高反向工作電壓Udrm

加在二極體兩端的反向電壓高到一定值時,會將管子擊穿,失去單向導電能力。為了保證使用安全,規定了最高反向工作電壓值。例如,IN4001二極體反向耐壓為50V,IN4007反向耐壓為1000V。

二極體

3、反向電流Idrm

反向電流是指二極體在常溫(25℃)和最高反向電壓作用下,流過二極體的反向電流。反向電流越小,管子的單方嚮導電性能越好。值得注意的是反向電流與溫度有著密切的關係,大約溫度每升高10℃,反向電流增大一倍。例如2AP1型鍺二極體,在25℃時反向電流若為250uA,溫度升高到35℃,反向電流將上升到500uA,依此類推,在75℃時,它的反向電流已達8mA,不僅失去了單方嚮導電特性,還會使管子過熱而損壞。又如,2CP10型矽二極體,25℃時反向電流僅為5uA,溫度升高到75℃時,反向電流也不過160uA。故矽二極體比鍺二極體在高溫下具有較好的穩定性。

4、動態電阻Rd

二極體特性曲線靜態工作點Q附近電壓的變化與相應電流的變化量之比。

5、最高工作頻率Fm

Fm是二極體工作的上限頻率。因二極體與PN結一樣,其結電容由勢壘電容組成。所以Fm的值主要取決於PN結結電容的大小。若是超過此值。則單向導電性將受影響。

6、電壓溫度係數αuz

αuz指溫度每升高一攝氏度時的穩定電壓的相對變化量。uz為6v左右的穩壓二極體的溫度穩定性較好

二極體

二極體的電壓與電流不是線性關係,所以在將不同的二極體並聯的時候要接相適應的電阻。

二極體的特性曲線

與PN結一樣,二極體具有單向導電性。矽二極體典型伏安特性曲線。在二極體加有正向電壓,當電壓值較小時,電流極小;當電壓超過0.6V時,電流開始按指數規律增大,通常稱此為二極體的開啟電壓;當電壓達到約0.7V時,二極體處於完全導通狀態,通常稱此電壓為二極體的導通電壓,用符號UD表示。

對於鍺二極體,開啟電壓為0.2V,導通電壓UD約為0.3V。

在二極體加有反向電壓,當電壓值較小時,電流極小,其電流值為反向飽和電流IS。當反向電壓超過某個值時,電流開始急劇增大,稱之為反向擊穿,稱此電壓為二極體的反向擊穿電壓,用符號UBR表示。不同型號的二極體的擊穿電壓UBR值差別很大,從幾十伏到幾千伏。

二極體的反向擊穿

齊納擊穿

電子-內部結構模型圖

反向擊穿按機理分為齊納擊穿和雪崩擊穿兩種情況。在高摻雜濃度的情況下,因勢壘區寬度很小,反向電壓較大時,破壞了勢壘區內共價鍵結構,使價電子脫離共價鍵束縛,產生電子-空穴對,致使電流急劇增大,這種擊穿稱為齊納擊穿。如果摻雜濃度較低,勢壘區寬度較寬,不容易產生齊納擊穿。

雪崩擊穿

另一種擊穿為雪崩擊穿。當反向電壓增加到較大數值時,外加電場使電子漂移速度加快,從而與共價鍵中的價電子相碰撞,把價電子撞出共價鍵,產生新的電子-空穴對。新產生的電子-空穴被電場加速後又撞出其它價電子,載流子雪崩式地增加,致使電流急劇增加,這種擊穿稱為雪崩擊穿。無論哪種擊穿,若對其電流不加限制,都可能造成PN結永久性損壞。

主要作用

二極體電路

二極體

二極體是最常用的電子元件之一,他最大的特性就是單向導電,也就是電流只可以從二極體的一個方向流過,二極體的作用有整流電路,檢波電路,穩壓電路,各種調製電路,主要都是由二極體來構成的,其原理都很簡單,正是由於二極體等元件的發明,才有我們現在豐富多彩的電子資訊世界的誕生,既然二極體的作用這麼大那麼我們應該如何去檢測這個元件呢,其實很簡單只要用萬用表打到電阻檔測量一下正向電阻如果很小,反相電阻如果很大這就說明這個二極體是好的。對於這樣的基礎元件我們應牢牢掌握住他的作用原理以及基本電路,這樣才能為以後的電子技術學習打下良好的基礎。

工作原理

晶體二極管為一個由p型半導體和n型半導體形成的pn結,在其介面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於pn結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓範圍內與反向偏置電壓值無關的反向飽和電流I0。當外加的反向電壓高到一定程度時,pn結空間電荷層中的電場強度達到臨界值產生載流子的倍增過程,產生大量電子空穴對,產生了數值很大的反向擊穿電流,稱為二極體的擊穿現象。pn結的反向擊穿有齊納擊穿和雪崩擊穿之分。

主要類型

二極體

二極體種類有很多,按照所用的半導體材料,可分為鍺二極體(Ge管)和矽二極體(Si管)。根據其不同用途,可分為檢波二極體、整流二極體、穩壓二極體、開關二極體、隔離二極體、肖特基二極體、發光二極體、矽功率開關二極體、旋轉二極體等。按照管芯結構,又可分為點接觸型二極體、面接觸型二極體及平面型二極體。點接觸型二極體是用一根很細的金屬絲壓在光潔的半導體晶片表面,通以脈衝電流,使觸絲一端與晶片牢固地燒結在一起,形成一個“PN結”。由於是點接觸,只允許通過較小的電流(不超過幾十毫安培),適用於高頻小電流電路,如收音機的檢波等。面接觸型二極體的“PN結”面積較大,允許通過較大的電流(幾安到幾十安),主要用於把交流電變換成直流電的“整流”電路中。平面型二極體是一種特製的矽二極體,它不僅能通過較大的電流,而且性能穩定可靠,多用於開關、脈衝及高頻電路中。

主要分類

構造分類

半導體二極體主要是依靠PN結而工作的。與PN結不可分割的點接觸型和肖特基型,也被列入一般的二極體的範圍內。包括這兩種型號在內,根據PN結構造面的特點,把晶體二極管分類如下:

點接觸型二極體

點接觸型二極體是在鍺或矽材料的單晶片上壓觸一根金屬針後,再通過電流法而形成的。因此,其PN結的靜電容量小,適用於高頻電路。但是,與面結型相比較,點接觸型二極體正向特性和反向特性都差,因此,不能使用於大電流和整流。因為構造簡單,所以價格便宜。

面接觸型二極體

面接觸型或稱面積型二極體的PN結是用合金法或擴散法做成的,由於這種二極體的PN結面積大,可承受較大電流,但極間電容也大。這類器件適用於整流,而不宜用於高頻率電路中。

鍵型二極體

鍵型二極體是在鍺或矽的單晶片上熔接或銀的細絲而形成的。其特性介於點接觸型二極體和合金型二極體之間。與點接觸型相比較,雖然鍵型二極體的PN結電容量稍有增加,但正向特性特別優良。多作開關用,有時也被應用於檢波和電源整流(不大於50mA)。在鍵型二極體中,熔接金絲的二極體有時被稱金鍵型,熔接銀絲的二極體有時被稱為銀鍵型。

合金型二極體

在N型鍺或矽的單晶片上,通過合金銦、鋁等金屬的方法製作PN結而形成的。正向電壓降小,適於大電流整流。因其PN結反向時靜電容量大,所以不適於高頻檢波和高頻整流。

擴散型二極體

在高溫的P型雜質氣體中,加熱N型鍺或矽的單晶片,使單晶片表面的一部變成P型,以此法PN結。因PN結正向電壓降小,適用於大電流整流。最近,使用大電流整流器的主流已由矽合金型轉移到矽擴散型。

檯面型二極體

PN結的製作方法雖然與擴散型相同,但是,只保留PN結及其必要的部分,把不必要的部分用藥品腐蝕掉。其剩餘的部分便呈現出檯面形,因而得名。初期生產的檯面型,是對半導體材料使用擴散法而製成的。因此,又把這種檯面型稱為擴散檯面型。對於這一類型來說,似乎大電流整流用的產品型號很少,而小電流開關用的產品型號卻很多。

平面型二極體

在半導體單晶片(主要地是N型矽單晶片)上,擴散P型雜質,利用矽片表面氧化膜的遮罩作用,在N型矽單晶片上僅選擇性地擴散一部分而形成的PN結。因此,不需要為調整PN結面積的藥品腐蝕作用。由於半導體表面被製作得平整,故而得名。並且,PN結合的表面,因被氧化膜覆蓋,所以公認為是穩定性好和壽命長的類型。最初,對於被使用的半導體材料是採用外延法形成的,故又把平面型稱為外延平面型。對平面型二極體而言,似乎使用於大電流整流用的型號很少,而作小電流開關用的型號則很多。

合金擴散型二極體

它是合金型的一種。合金材料是容易被擴散的材料。把難以製作的材料通過巧妙地摻配雜質,就能與合金一起過擴散,以便在已經形成的PN結中獲得雜質的恰當的濃度分佈。此法適用于製造高靈敏度的變容二極體。

外延型二極體

用外延面長的過程製造PN結而形成的二極體。製造時需要非常高超的技術。因能隨意地控制雜質的不同濃度的分佈,故適宜于製造高靈敏度的變容二極體。

肖特基二極體

基本原理是:在金屬(例如鉛)和半導體(N型矽片)的接觸面上,用已形成的肖特基來阻擋反向電壓。肖特基與PN結的整流作用原理有根本性的差異。其耐壓程度只有40V左右。其特長是:開關速度非常快:反向恢復時間trr特別地短。因此,能製作開關二極和低壓大電流整流二極體。

用途分類

1.檢波二極體

檢波二極體的主要作用是把高頻信號中的低頻信號檢出。它們的結構為點接觸型,所以其結電容較小,工作頻率較高。一般都採用鍺材料製成。就原理而言,從輸入信號中取出調製信號是檢波,以整流電流的大小(100mA)作為界線通常把輸出電流小於100mA的叫檢波。鍺材料點接觸型、工作頻率可達400MHz,正向壓降小,結電容小,檢波效率高,頻率特性好,為2AP型。類似點觸型那樣檢波用的二極體,除用於檢波外,還能夠用於限幅、削波、調製、混頻、開關等電路。也有為調頻檢波專用的特性一致性好的兩隻二極體組合件。

2.整流二極體

就原理而言,從輸入交流中得到輸出的直流是整流。以整流電流的大小(100mA)作為界線通常把輸出電流大於100mA的叫整流。面結型,因此結電容較大,一般為3kHZ以下。最高反向電壓從25伏至3000伏分A~X共22檔。分類如下:①矽半導體整流二極體2CZ型、②矽橋式整流器QL型、③用於電視機高壓矽堆工作頻率近100KHz的2CLG型。

3.限幅二極體

二極體正嚮導通後,它的正向壓降基本保持不變(矽管為0.7V,鍺管為0.3V)。利用這一特性,在電路中作為限幅元件,可以把信號幅度限制在一定範圍內。

大多數二極體能作為限幅使用。也有象保護儀錶用和高頻齊納管那樣的專用限幅二極體。為了使這些二極體具有特別強的限制尖銳振幅的作用,通常使用矽材料製造的二極體。也有這樣的組件出售:依據限制電壓需要,把若干個必要的整流二極體串聯起來形成一個整體。

4.調製二極體

通常指的是環形調製專用的二極體。就是正向特性一致性好的四個二極體的組合件。即使其它變容二極體也有調製用途,但它們通常是直接作為調頻用。

5.混頻二極體

使用二極體混頻方式時,在500~10,000Hz的頻率範圍內,多採用肖特基型和點接觸型二極體。

6.放大二極體

二級管圖示

用二極體放大,大致有依靠隧道二極體和體效應二極體那樣的負阻性 器件的放大,以及用變容二極體的參量放大。因此,放大用二極體通常是指隧道二極體、體效應二極體和變容二極體。

7.開關二極體

二極體在正向電壓作用下電阻很小,處於導通狀態,相當於一隻接通的開關;在反向電壓作用下,電阻很大,處於截止狀態,如同一隻斷開的開關。利用二極體的開關特性,可以組成各種邏輯電路。

有在小電流下(10mA程度)使用的邏輯運算和在數百毫安培下使用的磁芯激勵用開關二極體。小電流的開關二極體通常有點接觸型和鍵型等二極體,也有在高溫下還可能工作的矽擴散型、檯面型和平面型二極體。開關二極體的特長是開關速度快。而肖特基型二極體的開關時間特短,因而是理想的開關二極體。2AK型點接觸為中速開關電路用;2CK型平面接觸為高速開關電路用;用於開關、限幅、鉗位元或檢波等電路;肖特基(SBD)矽大電流開關,正向壓降小,速度快、效率高。

8.變容二極體

用於自動頻率控制(AFC)和調諧用的小功率二極體稱變容二極體。日本廠商方面也有其它許多叫法。通過施加反向電壓, ;使其PN結的靜電容量發生變化。因此,被使用於自動頻率控制、掃描振盪、調頻和調諧等用途。通常,雖然是採用矽的擴散型二極體,但是也可採用合金擴散型、外延結合型、雙重擴散型等特殊製作的二極體,因為這些二極體對於電壓而言,其靜電容量的變化率特別大。結電容隨反向電壓VR變化,取代可變電容,用作調諧回路、振盪電路、鎖相環路,常用於電視機高頻頭的頻道轉換和調諧電路,多以矽材料製作。

9.頻率倍增用二極體

對二極體的頻率倍增作用而言,有依靠變容二極體的頻率倍增和依靠階躍(即急變)二極體的頻率倍增。頻率倍增用的變容二極體稱為可變電抗器,可變電抗器雖然和自動頻率控制用的變容二極體的工作原理相同,但電抗器的構造卻能承受大功率。階躍二極體又被稱為階躍恢復二極體,從導通切換到關閉時的反向恢復時間trr短,因此,其特長是急速地變成關閉的轉移時間顯著地短。如果對階躍二極體施加正弦波,那麼,因tt(轉移時間)短,所以輸出波形急驟地被夾斷,故能產生很多高頻諧波。

10.穩壓二極體

這種管子是利用二極體的反向擊穿特性製成的,在電路中其兩端的電壓保持基本不變,起到穩定電壓的作用。是代替穩壓電子二極體的產品。被製作成為矽的擴散型或合金型。是反向擊穿特性曲線急驟變化的二極體。作為控制電壓和標準電壓使用而製作的。二極體工作時的端電壓(又稱齊納電壓)從3V左右到150V,按每隔10%,能劃分成許多等級。在功率方面,也有從200mW至100W以上的產品。工作在反向擊穿狀態,矽材料製作,動態電阻RZ很小,一般為2CW、2CW56等;將兩個互補二極體反向串接以減少溫度係數則為2DW型。

穩壓二極體的溫度係數α:α表示溫度每變化1℃穩壓值的變化量。穩定電壓小於4V的管子具有負溫度係數(屬於齊納擊穿),即溫度升高時穩定電壓值下降(溫度使價電子上升較高能量);穩定電壓大於7V的管子具有正溫度係數(屬於雪崩式擊穿),即溫度升高時穩定電壓值上升(溫度使原子振幅加大,阻礙載流子運動);而穩定電壓在4~7V之間的管子,溫度係數非常小,近似為零(齊納擊穿和雪崩擊穿均有)。

11.PIN型二極體(PIN Diode)

這是在P區和N區之間夾一層本征半導體(或低濃度雜質的半導體)構造的晶體二極管。PIN中的I是"本征"意義的英文略語。當其工作頻率超過100MHz時,由於少數載流子的存貯效應和"本征"層中的渡越時間效應,其二極體失去整流作用而變成阻抗元件,並且,其阻抗值隨偏置電壓而改變。在零偏置或直流反向偏置時,"本征"區的阻抗很高;在直流正向偏置時,由於載流子注入"本征"區,而使"本征"區呈現出低阻抗狀態。因此,可以把PIN二極體作為可變阻抗元件使用。它常被應用於高頻開關(即微波開關)、移相、調製、限幅等電路中。

12.雪崩二極體(Avalanche Diode)

它是在外加電壓作用下可以產生高頻振盪的電晶體。產生高頻振盪的工作原理是欒的:利用雪崩擊穿對晶體注入載流子,因載流子渡越晶片需要一定的時間,所以其電流滯後於電壓,出現延遲時間,若適當地控制渡越時間,那麼,在電流和電壓關係上就會出現負阻效應,從而產生高頻振盪。它常被應用于微波領域的振盪電路中。

13.江崎二極體(Tunnel Diode)

它是以隧道效應電流為主要電流分量的晶體二極管。其基底材料是砷化鎵和鍺。其P型區的N型區是高摻雜的(即高濃度雜質的)。隧道電流由這些簡並態半導體的量子力學效應所產生。發生隧道效應具備如下三個條件:①費米能級位於導帶和滿帶內;②空間電荷層寬度必須很窄(0.01微米以下);簡並半導體P型區和N型區中的空穴和電子在同一能級上有交疊的可能性。江崎二極體為雙端子有源器件。其主要參數有峰穀電流比(IP/PV),其中,下標"P"代表"峰";而下標"V"代表"谷"。江崎二極體可以被應用於低雜訊高頻放大器及高頻振盪器中(其工作頻率可達毫米波段),也可以被應用於高速開關電路中。

14.快速關斷(階躍恢復)二極體(Step Recovary Diode)

它也是一種具有PN結的二極體。其結構上的特點是:在PN結邊界處具有陡峭的雜質分佈區,從而形成"自助電場"。由於PN結在正向偏壓下,以少數載流子導電,並在PN結附近具有電荷存貯效應,使其反向電流需要經歷一個"存貯時間"後才能降至最小值(反向飽和電流值)。階躍恢復二極體的"自助電場"縮短了存貯時間,使反向電流快速截止,並產生豐富的諧波分量。利用這些諧波分量可設計出梳狀頻譜發生電路。快速關斷(階躍恢復)二極體用於脈衝和高次諧波電路中。

15.肖特基二極體 ;(Schottky Barrier Diode)

它是具有肖特基特性的"金屬半導體結"的二極體。其正向起始電壓較低。其金屬層除材料外,還可以採用金、鉬、鎳、鈦等材料。其半導體材料採用矽或砷化鎵,多為N型半導體。這種器件是由多數載流子導電的,所以,其反向飽和電流較以少數載流子導電的PN結大得多。由於肖特基二極體中少數載流子的存貯效應甚微,所以其頻率響僅為RC時間常數限制,因而,它是高頻和快速開關的理想器件。其工作頻率可達100GHz。並且,MIS(金屬-絕緣體-半導體)肖特基二極體可以用來製作太陽能電池或發光二極體。

可作為續流二極體,在開關電源的電感中和繼電器等感性負載中起續流作用。

16.阻尼二極體

阻尼二極體多用在高頻電壓電路中,具有較高的反向工作電壓和峰值電流,正向壓降小,高頻高壓整流二極體,用在電視機行掃描電路作阻尼和升壓整流用。常用的阻尼二極體有2CN1、2CN2、BSBS44等。

17.瞬變電壓抑制二極體

TVP管,對電路進行快速過壓保護,分雙極型和單極型兩種,按峰值功率(500W-5000W)和電壓(8.2V~200V)分類。

18.雙基極二極體(單結晶體管)

兩個基極,一個發射極的三端負阻器件,用於張馳振盪電路,定時電壓讀出電路中,它具有頻率易調、溫度穩定性好等優點。

19.發光二極體

用磷化鎵、磷砷化鎵材料製成,體積小,正向驅動發光。工作電壓低,工作電流小,發光均勻、壽命長、可發紅、黃、綠、藍單色光。隨著技術的進步,近來研製成了白光高亮二極體,形成了LED照明這一新興產業。

還用於VCD、DVD、計算器等顯示器上。

20.、矽功率開關二極體

矽功率開關二極體具有高速導通與截止的能力。它主要用於大功率開關或穩壓電路、直流變換器、高速電機調速及在驅動電路中作高頻整流及續流箝拉,具有恢復特性軟、超載能力強的優點、廣泛用於電腦、雷達電源、步進電機調速等方面。

21.旋轉二極體

主要用於無刷電機勵磁、也可作普通整流用。

22.觸發二極體

觸發二極體又稱雙向觸發二極體(DIAC)屬三層結構,具有對稱性的二端半導體器件。常用來觸發雙向可控矽;,在電路中作過壓保護等用途。

特性分類

點接觸型二極體,按正向和反向特性分類如下。

1.一般用點接觸型二極體

這種二極體正如標題所說的那樣,通常被使用於檢波和整流電路中,是正向和反向特性既不特別好,也不特別壞的中間產品。如:SD34、SD46、1N34A等等屬於這一類。

2.高反向耐壓點接觸型二極體

是最大峰值反向電壓和最大直流反向電壓很高的產品。使用于高壓電路的檢波和整流。這種型號的二極體一般正向特性不太好或一般。在點接觸型鍺二極體中,有SD38、1N38A、OA81等等。這種鍺材料二極體,其耐壓受到限制。要求更高時有矽合金和擴散型。

3.高反向電阻點接觸型二極體

正向電壓特性和一般用二極體相同。雖然其反方向耐壓也是特別地高,但反向電流小,因此其特長是反向電阻高。使用于高輸入電阻的電路和高阻負荷電阻的電路中,就鍺材料高反向電阻型二極體而言,SD54、1N54A等等屬於這類二極體。

4.高傳導點接觸型二極體

它與高反向電阻型相反。其反向特性儘管很差,但使正向電阻變得足夠小。對高傳導點接觸型二極體而言,有SD56、1N56A等等。對高傳導鍵型二極體而言,能夠得到更優良的特性。這類二極體,在負荷電阻特別低的情況下,整流效率較高。

發光分類

二極體

1.按發光管發光顏色分

按發光管發光顏色分,可分成紅色、橙色、綠色(又細分黃綠、標準綠和純綠)、藍光等。另外,有的發光二極體中包含二種或三種顏色的晶片。根據發光二極體出光處摻或不摻散射劑、有色還是無色,上述各種顏色的發光二極體還可分成有色透明、無色透明、有色散射和無色散射四種類型。散射型發光二極體和達於做指示燈用。

2.按發光管出光面特徵分

二極體

按發光管出光面特徵分圓燈、方燈、矩形、面發光管、側向管、表面安裝用微型管等。

圓形燈按直徑分為φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。國外通常把φ3mm的發光二極體記作T-1;把 ;φ5mm的記作T-1(3/4);把φ4.4mm的記作T-1(1/4)。由半值角大小可以估計圓形發光強度角分佈情況。

3.從發光強度角分佈圖來分有三類:

⑴高指向性。一般為尖頭環氧封裝,或是帶金屬反射腔封裝,且不加散射劑。半值角為5°~20°或更小,具有很高的指向性,可作局部照明光源用,或與光檢出器聯用以組成自動檢測系統。

⑵標準型。通常作指示燈用,其半值角為20°~45°。

⑶散射型。這是視角較大的指示燈,半值角為45°~90°或更大,散射劑的量較大。

導電特性

二極體最重要的特性就是單方嚮導電性。在電路中,電流只能從二極體的正極流入,負極

二極體

流出。

正向特性

在電子電路中,將二極體的正極接在高電位端,負極接在低電位端,二極體就會導通,這種連接方式,稱為正向偏置。必須說明,當加在二極體兩端的正向電壓很小時,二極體仍然不能導通,流過二極體的正向電流十分微弱。只有當正向電壓達到某一數值(這一數值稱為“門檻電壓”,又稱“死區電壓”,鍺管約為0.1V,矽管約為0.5V)以後,二極體才能直正導通。導通後二極體兩端的電壓基本上保持不變(鍺管約為0.3V,矽管約為0.7V),稱為二極體的“正向壓降”。

反向特性

在電子電路中,二極體的正極接在低電位端,負極接在高電位端,此時二極體中幾乎沒有電流流過,此時二極體處於截止狀態,這種連接方式,稱為反向偏置。二極體處於反向偏置時,仍然會有微弱的反向電流流過二極體,稱為漏電流。當二極體兩端的反向電壓增大到某一數值,反向電流會急劇增大,二極體將失去單方嚮導電特性,這種狀態稱為二極體的擊穿。

主要參數

參數

用來表示二極體的性能好壞和適用範圍的技術指標,稱為二極體的參數。不同類型的二極體有不同的特性參數。對初學者而言,必須瞭解以下幾個主要參數:

1、最大整流電流IF

是指二極體長期連續工作時,允許通過的最大正向平均電流值,其值與PN結面積及外部散熱條件等有關。因為電流通過管子時會使管芯發熱,溫度上升,溫度超過容許限度(矽管為141左右,鍺管為90左右)時,就會使管芯過熱而損壞。所以在規定散熱條件下,二極體使用中不要超過二極體最大整流電流值。例如,常用的IN4001-4007型鍺二極體的額定正向工作電流為1A。

2、最高反向工作電壓Udrm

加在二極體兩端的反向電壓高到一定值時,會將管子擊穿,失去單向導電能力。為了保證使用安全,規定了最高反向工作電壓值。例如,IN4001二極體反向耐壓為50V,IN4007反向耐壓為1000V。

二極體

3、反向電流Idrm

反向電流是指二極體在常溫(25℃)和最高反向電壓作用下,流過二極體的反向電流。反向電流越小,管子的單方嚮導電性能越好。值得注意的是反向電流與溫度有著密切的關係,大約溫度每升高10℃,反向電流增大一倍。例如2AP1型鍺二極體,在25℃時反向電流若為250uA,溫度升高到35℃,反向電流將上升到500uA,依此類推,在75℃時,它的反向電流已達8mA,不僅失去了單方嚮導電特性,還會使管子過熱而損壞。又如,2CP10型矽二極體,25℃時反向電流僅為5uA,溫度升高到75℃時,反向電流也不過160uA。故矽二極體比鍺二極體在高溫下具有較好的穩定性。

4、動態電阻Rd

二極體特性曲線靜態工作點Q附近電壓的變化與相應電流的變化量之比。

5、最高工作頻率Fm

Fm是二極體工作的上限頻率。因二極體與PN結一樣,其結電容由勢壘電容組成。所以Fm的值主要取決於PN結結電容的大小。若是超過此值。則單向導電性將受影響。

6、電壓溫度係數αuz

αuz指溫度每升高一攝氏度時的穩定電壓的相對變化量。uz為6v左右的穩壓二極體的溫度穩定性較好

同類文章
Next Article
喜欢就按个赞吧!!!
点击关闭提示